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J .  Phys. A: Math. Gen. 19 (1986) L1015-L1019. Printed in Great Britain 

LETTER TO THE EDITOR 

About the critical condition of the q-state Potts model on the 
anisotropic hypercubic lattice 

D HajdukoviC and R L SCepanovif 
Institute of Mathematics and Physics, University 'V VlahoviC', 81OOO Titograd, Yugoslavia 

Received 13 May 1986 

Abstract. A critical condition is obtained for the ferromagnetic model on the hypercubic 
lattice in d dimensions with different Potts interactions along the different lattice axes. It 
is done by extending a simple procedure which i s  shown to be exact for the square lattice 
in d = 2 dimensions. 

The model considered in this letter is the q-state Potts ferromagnet with different 
two-site interactions along the different lattice axes. For such a Potts model on a lattice 
of N sites, the Hamiltonian X generally takes the form 

Here o, = 1 , 2 , .  . . , q specifies the spin state at the ith site, Fkr(  ., .) is the Kronecker 
delta, E ,  > 0 is the strength of the two-site interaction along the a axis (a = 1,2,3,  . . . , p) 
and the sum is taken over the nearest-neighbour sites on the lattice. The exact critical 
condition for this model is known only in d = 2 dimensions for the square, triangular 
and honeycomb lattice (Potts 1952, Kihara e? a1 1954, Suzuki and Fisher 1971, Kim 
and Joseph 1974, Baxter e? a1 1978, Burkhardt and Southern 1978, Hinterman et al 
1978). (A review of all these results may be found in Wu (1982).) To our best knowledge 
there are no results available for anisotropic models in higher than two dimensions. 

In the present letter we are going to make two steps. In the first step we present 
a simple procedure which produces the known exact results for the q = 2 model in 
d = 2 dimensions. After that we extend to the anisotropic case a critical condition 
which was previously obtained (HajdukoviC 1983) for the isotropic model on the 
hypercubic lattice in d dimensions. 

To this end let us rewrite the Hamiltonian (1) in the form 

X =  - f Eane 
a = l  

where nu is the number of bonds along the a axis (a = 1,2, . . . , p) with both ends in 
the same state. The partition function is then 

Here K ,  = E,/k,T, the sum is taken over all possible values of n , ,  n,, . . . , np and 
G ( n l ,  n,, . . . , n p )  is the number of configurations for a given sequence n,, n2,. . . , np.  
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To be definite let us consider the case of a square lattice with couplings K, and 
K 2  along two different lattice axes. It is extremely difficult to obtain z(n, ,  n,) for the 
entire lattice. They are, however, easily obtained for just a simple square. The 
assumption is that the information about the critical condition of the infinite system 
is retained in the values of z( n, , n2) for a single square. The possible values of z( n, , n2) 
for a single square in the case q = 2 are 

z(2,2) = 2 exp[2(K, + K 2 ) ]  

z(1 , l )  = 8 exp(K, + K 2 )  

z(2,O) = 2 exp(2K,) 

z(0,2) = 2 exp(2K2) 

z(0,O) = 2. 

(4) 

The values (4) can be classified into three sets: S,, S, and So which are determined 
by the conditions 

n = n,  + n, = 4,2,0 

respectively. In the isotropic case (K, = K , )  every set determined in such a way 
corresponds to a definite ‘energy level’ of the square considered. For n = 0,4  the spin 
state of a spin uniquely determines the states of the other spins on the square. For 
n = 2 the knowledge of the state of a single spin is not sufficient to determine the states 
of the others. In a way, sets S, and So represents the states with rigorous regularity 
in order, while S2 represent the states with no regularity in order. Let us assume that, 
at the critical temperature of an infinite lattice, the sum of values from sets S, and So 
is equal to the sum of values from S2, i.e. that the critical condition is 

( 5 )  z(2,2) - z( 1, 1) - z(2,O) - z(O,2) + z(0,O) = 0. 

If we introduce equation (4), equation ( 5 )  becomes 

2[exp(K,+K2)-exp(K,)-exp(K2)- 11[exp(K,+~,)+exp(K,)+exp(K2)-  13 = O  

i.e. because we are interested only in the solution with K 1 ,  K ,  > 0, 

( 6 )  

(7)  
This is the well known exact critical condition for the q = 2 ferromagnetic Potts model 
on the square lattice. 

As another example let us consider the triangular lattice with couplings K ,  , K , ,  
K ,  along three different lattice axes. The possible values of z(nl , n2, n3) for a single 
triangle in the case q = 2 are 

exp( K ,  + K 2 )  - exp( K , )  - exp( K 2 )  - 1 = 0. 

z(1, 1 ,1 )=2exp(K,+K2+K3)  

z( 1, 0,O) = 2 exp( K,) 

z(0, 1, 0) = 2 exp(K,) 

z(O,O, 1) = 2 exp(K,). 

The same procedure as in the case of the square lattice gives the exact critical condition 

z ( l , l ,  1)-z(1,0,0)-z(0,1,0)-2(0,0,1)=0 
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i.e. 
exp( K ,  + K 2  + K , )  - exp( K , )  - exp( K 2 )  - exp( K , )  = 0. (9) 

For a honeycomb lattice it is possible to obtain the exact critical condition by 
considering a single hexagon or, which is simpler, a site of the honeycomb lattice with 
its three neighbours. In the latter case, for q = 2 we have the possible values 

z ( l , l ,  l )=2exp(K,+K2+K, )  

z ( l , l ,  0) = 2 exp(K, + K 2 )  

z( l,O, 1) = 2 exp(K, + K,) 

z(O,l, l )=2exp(K2+K3)  

z( 1, 0,O) = 2 exp( K,) 

z(0, 1,O) = 2 exp(K2) 

z(O,O, 1) = 2 exp(K,) 

z(O,O, 0) = 2 

z ( l , l ,  l ) - z ( l , l , o ) - z ( l , o , l ) - z ( o ,  1 , l )  

and the same rule as for the square and triangular lattice leads to 

-z(1,0,0)-z(O, 1,O)-z(O,O, 1)+z(0 ,0 ,0)=0 
i.e. 
exp( K ,  + K 2  + K , )  - exp( K ,  + K , )  - exp( K ,  + K , )  

- exp( K 2  + K,) - exp( K,) - exp( K 2 )  - exp( K , )  + 1 = 0 (11) 
which is again the exact critical condition. 

We do not know why the procedure described gives the exact results but it is 
obviously not a coincidence. In our opinion further understanding of this procedure 
will be important. 

We now turn to the problem of the determination of the critical condition for the 
anisotropic model on the hypercubic lattice in d dimensions. Let us point out two 
facts about the critical condition of a square lattice (i.e. a hypercubic lattice in d = 2 
dimensions). 

(i)  The exact critical condition for general q differs from (7) only in the right-hand 
side which is equal to q - 2 instead of zero. So the exact critical condition is of the form 

F ( K I ,  K , ) = q - 2 .  
The function F ( K , ,  K , )  may be obtained by our procedure as a linear combination 
of the z( n, , n 2 )  for a single hypercube in d = 2 dimensions (i.e. a single square). 

(ii) The critical condition for the anisotropic model reduces to that of the isotropic 
model if we take K1 = K 2 =  K, i.e. the critical condition for the isotropic model is to 
be obtained as a particular case ( K ,  = K 2 )  of the anisotropic model. 

As a basis for our further considerations we accept that (i)  and (ii) are true in the 
general case of d dimensions. However, in d 2 3 dimensions it is not clear how to use 
rule (i). So, in the case of a simple cubic lattice with couplings K , ,  K 2 ,  K ,  along 
three lattice axes, by inspection of 256 different configurations of a simple cube for 
q = 2, we may obtain the possible values of z(n, ,  n,, n 3 )  but we do not know an actual 
rule to form the linear combination needed with these values of z ( n , ,  n 2 ,  n,). At this 
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point rule (ii) can be helpful to us, because in a previous letter (HajdukoviC 1983) an 
approximate critical condition for the q-state Potts model on the isotropic hypercubic 
lattice, which is in excellent agreement with numerical studies, was obtained. Thus, 
we are looking for such a critical condition of the anisotropic model which reduces 
to this known critical condition of the isotropic model. A simple analysis of all possible 
values of z( n, , n,, n3) for a single cube shows that for q = 2 this requirement is satisfied 
only if 

z(3,3,3)-2(2,2,2)+z(l ,  1 ,1)=0.  (12) 

z(3,3,3) = 16 exp[3(K1 + K,+ K3)] 

z(2,2,2) = 64 exp[2( K ,  + K, + K3)] 

For a single cube we have 

(13) 

I( 1,1,1) = 16 exp(K, + KZ+ K,) 

so that (12) may be transformed into 
e x p ( K , + K 2 + K , ) { e x p ( K , + K , + K 3 ) - f i e x p [ ( K l +  KZ+K3)/2]-1} 

x{exp(K,+K,+ K , )+ f i exp[ (K ,+  K,+K3)/2]-1}=O 

i.e. because we are interested only in the solution with K, ,  K 2 ,  K3 > 0, 

exp(K1+ K 2 + K 3 ) - f i e x p [ ( K l + K 2 + K 3 ) / 2 ] - 1  = O .  (14) 

Thus, in order to satisfy (i), (ii) and the condition for the isotropic model (HajdukoviC 
1983) the critical condition for the anisotropic model on the sc lattice is to be 

and for the general case of d dimensions 

e x p ( i l  ICa) -21"d-1)exp[f( a = l  K a ) ]  -1 =q-2 .  

So, we think there are good reasons to conclude that ( 1 3 ,  and especially (14), are 
reliable critical conditions for the corresponding lattices. From (15) we have the 
prediction 

Kl,+ Ktc+ K3,+. . .+Kdc" dK, 

K,,+ K2,+ K,, = ln[q + (2q - 1)1'2] = 3K, 

(17) 

(18) 
where K, is the critical coupling for the corresponding isotropic lattice and K,, 
(a = 1,2, .  . .) are critical couplings of the anisotropic model. 

At this point a comparison with numerical results in the anisotropic case would 
be welcome. Unfortunately, we have not been able to find such results in the literature 
about Potts models. 

In conclusion, let us point out a difference between the isotropic and anisotropic 
cases. In the isotropic case, the critical condition (HajdukoviC 1983) is an equation 
of the same structure for all d. In fact, it is equation (16) with K I  = K 2  = . . . = Kd = K.  
However, in the anisotropic case, with d = 2, (16) does not agree with (7). Thus, in a 
way, our procedure leads to the conclusion that in the anisotropic case the critical 

i.e. for the sc lattice 
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condition for d = 2 and d 2 3 are equations with different structure. It is interesting 
to note that it is in agreement with the rigorous result of Maillard and Rammal (1983) 
that the unknown critical condition in d = 3 dimensions cannot be an equation of the 
same structure as in d = 2 dimensions. 

Besides the lattices considered in this letter it may be of interest to apply the same 
technique to other lattices such as the generalised square lattice, kagome lattice and 
the 3-12 lattice. We hope to be able to present corresponding results for some other 
lattices in the near future. 
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